RIP 1 kinase inhibition for acute ischemic kidney injury

Kevin Gallagher
MRC/KRUK/GSK PhD fellow
University of Edinburgh
Supervisors: Ewen Harrison, Jeremy Hughes, Jim
Ross, Lorna Marson, Stephen Wigmore, Allison Beal

Ischemia reperfusion injury: Acute kidney injury in transplant

DCD transplantation

40% get delayed graft function

Increased rate of graft loss

The pathology: Acute tubular necrosis

The pathology: Acute tubular cell necrosis

How do cells die and can we stop them?

Programmed cell suicide:

APOPTOSIS

NECROSIS

PROGRAMMED NECROSIS?

NECROPTOSIS

Can we stop tubular cells from necrosing with a drug?

Necroptosis - a wild fire of programmed necrosis.

Definition? Caspase independent cell death dependent on Stimulus: Many IDO Immune Necrostatin-1 RIPK1 **MLKL** pathways T-cell receptors

Overall aim:

To prove that tubular necrosis can be prevented by inhibiting RIPK1/NECROPTOSIS in ischemia reperfusion injury

And determine if this is beneficial even if drug is given *AFTER* the injury

Methods: Mouse and human cell ischemic injury

The drug: World first, highly specific and potent RIPK1 inhibitor (human ready)

Mouse: IRI

Human: proximal tubular cell

In-vitro ischemic models

Does *specific* RIPK1 inhibition improve kidney function and reduce cell death in IRI?

Highly specific RIPK1 inhibition reduces creatinine in IRI

x200

Moderate injury 50-60% CMJ tubular necrosis

Severe injury 80-90% CMJ tubular necrosis

RIPK1 inhibition significantly reduces tubular necrosis in IRI

Tubular necrosis scores:

Median (25th, 75th) shown

Does RIPK1 inhibition reduce tubular cell necroptosis?

Improves renal function

Need to show evidence of MLKL *phosphorylation*:

Reduces necrosis

Healthy kidney (sham): No dead cells (red), no phosphorylated MLKL (green)

Green: Activated MLKL (phosphorylated)

Red: Dead cells (TUNEL)

x100

Activated MLKL is found on the apical boarder of IRI injured tubules:

Green: Activated MLKL (phosphorylated)

Red: Brightfield pseudocolour

Blue: DAPI (nuclei)

X400 magnification

TUNEL and Phosphorylated MLKL: Replicated and quantified

pMLKL quantification

Can the benefit be maintained with drug given after the injury?

RIPK1 inhibition still effective when given AFTER the injury

Drug first given after 4 hours of reperfusion

Creatinine 48 hours after injury

Urea 48 hours after injury

Are there effects on the ensuing immune cell influx?

RIPK1 inhibition reduces the number of inflammatory macrophages in the kidney at 48 hours

Whole kidney flow cytometry macrophage panel (8 antibodies)

CD45+ve/F480+ve/Ly6c+ve/CD206-ve Inflammatory macrophages

IRI with 48 hours reperfusion: Drug given 4 hours after injury

RIPK1 inhibition reduces renal inflammatory macrophage numbers 48 hours after IRI

Each dot = a macrophage. Split by: Inflammatory activation.

Ly6C positive: highly inflammatory

Is RIPK1 inhibition beneficial in **human** ischemic tubular cell injury?

Human tubular cells are protected from chemical anoxia by RIPK1 inhibition

Summary: Highly specific RIPK1 inhibition

Ackowledgements

- MRC, KRUK and GSK
- My supervisors
- Jim Black, Kathryn Sangster, Jyoti Nanda, Anwar Palakka, Gary Borthwick, Laura Denby, Carolynn Cairns

