RECIPIENT APOL1 GENOTYPE AND ALLOGRAFT OUTCOMES IN LIVE KIDNEY TRANSPLANTATION

Konstantinos Koutroutsos^{1 3}, Ruhena Sergeant², Fiona Powell², Corinna Freeman², Rawya Charif¹, Paul Brookes², David Taube¹ and Marina Loucaidou¹

¹ Kidney and Transplant Center, Imperial College Healthcare NHS Trust, London, United Kingdom

² Histocompatibility and immunogenetics laboratory, Imperial College Healthcare NHS Trust, London, United Kingdom

³Sussex Kidney Unit, Brighton and Sussex University Hospitals

Background

- Apolipoprotein1 (APOL1) risk variants have emerged as a risk factor for renal disease in African Americans.
- In a study of 3438 healthy young adults, (median f/u 24.9 years), it was shown that the projected risk for CKD is significantly increased for AA with 2 APOL1 renal-risk variants
- In Transplantation, it has been shown that the well documented poor outcomes of African American (AA) deceased-donor allografts, are probably influenced by donor APOL1 risk alleles

Genovese G, et al. Science 2010; 329: 841
Reeves-Daniel AM, et al. Am J Transplant. 2011; 11:1025–1030.
Lee BT. et al., Am J Transplant. 2012; 12:1924–1928.

Background

- The effect of APOL1 genotype of the Living Kidney Transplant Recipients (KTR) has been rarely reported.
- A retrospective analysis of 119 AA kidney transplant recipients, found that 58 (48.7%) carried two APOL1 risk variants. These did not increase the risk of allograft loss after kidney transplant

Lentine KL, Schnitzler MA, Xiao H, et al. N Engl J Med. 2010; 363:724–732. Lee BT, et al. Am J Transplant. 2012 Jul;12(7):1924-8 Locke JE, etla. Ann Surg. 2017 Feb 9

Aim

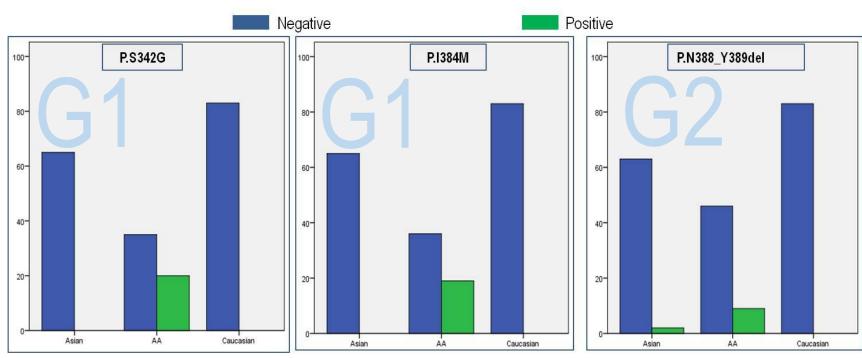
In this study, we investigated the effect of KTR APOL1 genotype on allograft outcomes

Methods

- We reviewed prospectively collected data on 220 KTR (141 male, mean age 46.7, 18-73 years).
- Primary outcomes were:
 - Death censored allograft loss
 - Post transplant eGFR at 6, 12 and 36 months as a measure of kidney function
- Student's t-test and chi square were applied to compare continuous and non parametric variables.
- Repeated Measures, and Kaplan Meier analysis were used to investigate outcomes

Methods

 Genomic DNA was extracted from stored blood samples and three APOL1 single nucleotide polymorphisms (SNPs) were amplified using primers.


- The variants typed were:
 - G1 (rs73885319 and rs60910145): 2 missense mutations in the last exon of the APOL1 gene (S342G and I384M), leading to two non-synonymous amino acid substitutions (A→G; S342G and G→T; 384M, respectively), and
 - **G2** (rs71785313): a 6 base pair deletion leading to the deletion of two amino acids (delN388/Y389) in the last exon of the APOL1 gene.

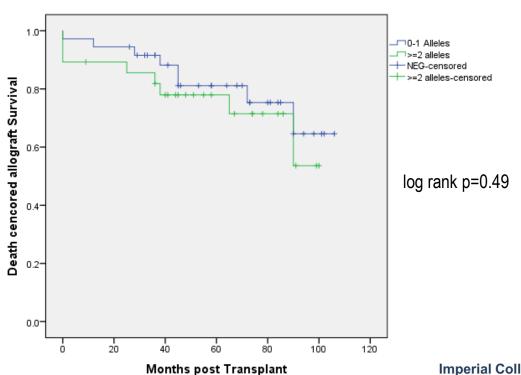
220 KTR, with a mean follow up 69+27 months, were included:

- 77 Asian (48 male, mean age 45.9, 20-69 years),
- 66 AA (37 male, mean age 47.7, 20-71 years), and
- 77 Caucasian (47 male, mean age 46.65, 18-74 years)

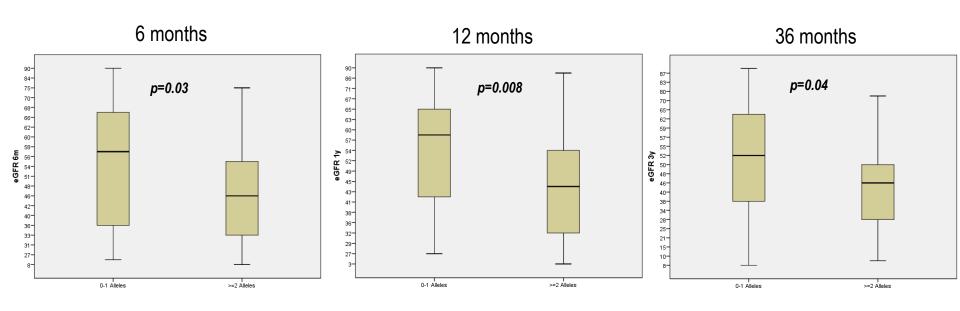
Two APOL1 risk alleles were found in 28 (42.4%) AA, 1 (1.3%) Asian and none of the Caucasian KTR's.

(p<0.001)

Imperial College

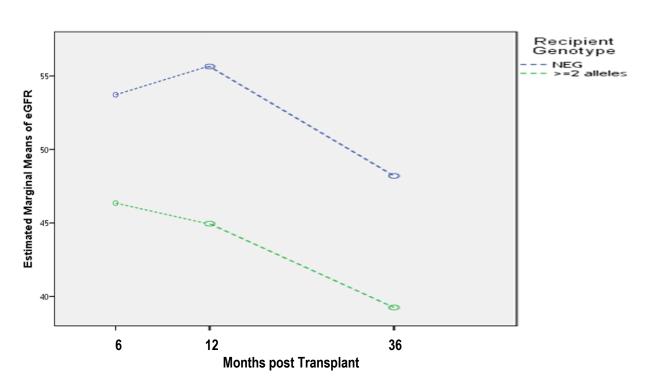

AA KTR Characteristics

		Number of alleles		
		0	>=2	Р
Gender	M	25	12	0.06
	F	13	16	0.06
Recipient Age		48 (20-71)	47.3 (22-68)	0.83
Primary Diagnosis	Diab Neph	10	3	0.1
	GN	10	11	
	Other	12	13	
	Unknown	6	1	
Induction im/on	IL2	9	11	0.0
	Alemtuzumab	29	17	0.2
Donor Type	LRTx	28	20	0.50
	LURtx	10	8	0.52
Donor age		41.3(18-68)	36.9 (22-56)	0.11

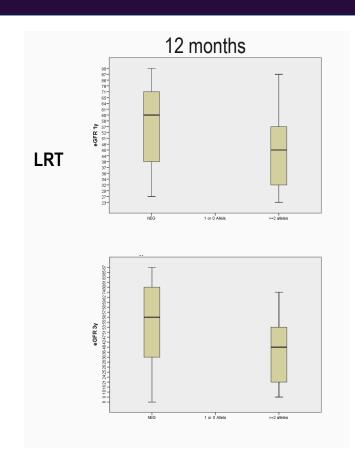


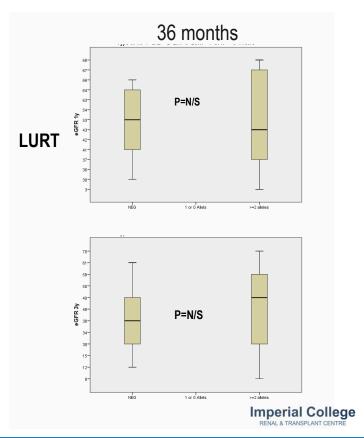
In the AA cohort, Kaplan Meier analysis showed no significant difference in allograft survival in KTR'S with ≥ 2 and 0-1 risk alleles.

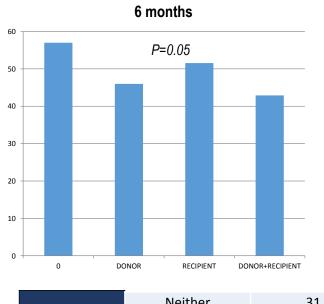
African Ancestry

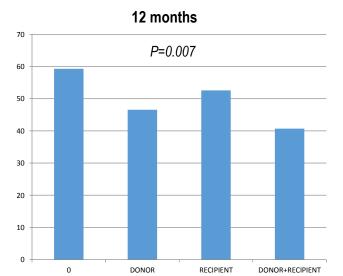

Imperial College

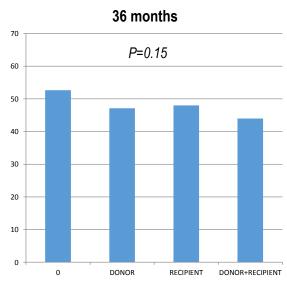
KTR with \geq 2 risk alleles were found to have lower eGFR at 6m (54.7 \pm 18.1 $_{ ext{v}}$ vs 45.3 \pm 15.3, p=0.03), 1y (56,7 \pm 17.5 vs 44 \pm 17.4, p=0.008) and 3y (51.5 \pm 21.7 vs 40.9 \pm 17.1, p=0.04).


However, repeated measures analysis showed no significant difference in the rate of eGFR decline between groups. (p=0.6)




What about the Donors?


Number of alleles						
0		>=2				
LRTx	2	28	20			
LURtx	1	10	8			



Donor and recipient genotype

>=2 alleles	Neither	31
	DONOR	7
	RECIPIENT	10
	DONOR+RECIPIENT	18

Conclusion

Our results confirm the presence of APOL1 risk alleles in a European cohort of KTR of African Ancestry

 In this single center study, with short term follow up, the presence of APOL1 risk alleles did not affect allograft loss

• KTR with ≥2 risk alleles appear to have lower eGFR for the first 3 years post transplant, a finding which could be related to the Donor genotype

Acknowledgments

- Transplant Team at Imperial College Renal and Transplant Centre
- H&I Scientists at Imperial College Healthcare NHS Trust
- National Institute for Health Research (NIHR) Biomedical Research Centre based at Imperial College Healthcare NHS Trust and Imperial College London
- Patients and Families

